Die Molekülspektren gesättigter Sechserringe.

(Cyclohexan, Pentamethylenoxyd, Piperidin, N-Methylpiperidin, Methylcyclohexan und Pentamethylensulfid.)

Von

H. Voetter und H. Tschamler.

Aus dem Institut für Verfahrenstechnik der Technischen Hochschule Wien und dem I. Chemischen Laboratorium der Universität Wien.

Mit 3 Abbildungen.

(Eingelangt am 17. Dez. 1952. Vorgelegt in der Sitzung am 15. Jan. 1953.)

Die gesamten Molekülspektren der angeführten gesättigten Sechserringe lassen sich unter der Annahme der jeweils einfachsten zu erwartenden Molekülstruktur widerspruchslos deuten.

Cyclohexan besitzt eindeutig die Symmetrie D_{3d} ("Sesselform"). Durch ein in den Ring eingeführtes Heteroatom oder durch eine CH_3 -Substitution wird die Symmetrie bis zu C_8 erniedrigt. Daß auch in diesen Sechserringen die "Sesselform" beibehalten bleibt, ist zwar nicht eindeutig feststellbar, jedoch als sehr wahrscheinlich anzunehmen.

Im Anschluß an die ausführlich behandelten gesättigten Fünferringe¹ haben wir eine analoge Analyse der Molekülspektren der im Titel genannten Substanzen und die Zuordnung der Frequenzen zu den einzelnen Normalschwingungen durchgeführt. Auch diese Verbindungen standen uns in sehr reiner Form zur Verfügung²; daher konnten die in der Literatur noch nicht bekannten Ultrarot- und Ramanspektren bestimmt, bzw. die bereits beschriebenen überprüft und ergänzt werden. Für die Meßmethodik und die verwendeten Apparaturen sei auf Anm. 1 verwiesen.

¹ H. Tschamler und H. Voetter, Mh. Chem. 83, 302; 835; 1228 (1952).

² Die Reinstpräparate wurden uns in entgegenkommendster Weise von Herrn Prof. Dr. A. Müller (I. Chem. Laboratorium der Universität Wien) überlassen, wofür wir ergebenst danken.

Abb. 1. Die Ultrarot-Spektren gesättigter Sechserringe zwischen 650 und 3300 $\rm cm^{-1}.$

I. Meßergebnisse.

Vorbemerkung zu den Tabellen. Allgemein gilt für alle Tabellen dieses Abschnittes: In der Rubrik "*Raman"* stehen in der 1. Spalte die beobachteten Frequenzen in cm⁻¹, in der 2. Spalte die Intensitäten und Beschaffenheit der Linien (b = breit, sb = sehr breit) und in der 3. Spalte der Depolarisationsgrad ρ ; in der Rubrik "*Ultrarot"* stehen in der 1. Spalte die Frequenzlagen

Tabelle 1. Raman- und Ultrarotfrequenzen des Cyclohexans.

	Ram	Ultrarot			
<i>F</i> . ⁴	i i	K. und W. ⁸		eigene .	Aufnahme
em−1	em ⁻¹	I	e	cm ⁻¹	I
$\begin{array}{c} 381 \\ 423 \end{array}$		0,026 0,047	р 0,8		
	ļ			527^{5}	sehw
		2	ļ	674	schw
000		0.495	0.19	722	sschw
802		0,455	0,15	869	ot
	}	}		001	50
	1		!	1015	5U 700
1031		0.303	1070	1019	111
1001	1	0,000	0,10	1039	m
1161		0.044	0.3	1000	
1101		0,011	0,0	1259	st.
1270	1	0.248	0.77	1200	50
		0,210	0,	1342	schw
1351		0.040	0.8	1012	3041
		0,010	0,0	1367	schw
1451		0.219	0.81	1452	sst
	1461	1	0,01	1102	200
				1511	schw
				1577	sschw
				1652	sschw
		j .		1772	sschw
		· · ·		1992	sschw
	}			2410	sschw
	2607	0 b		2610	schw
	2632	3			
	2666	5	p	2667	m
	2698	2		2701	schw
Ч.,				2800	m
	2852	15 b	0,18	2857	sst
	2871	4			
	2888	6	dp		
	2905	6			
		-		2915	$^{\mathrm{st}}$
	2923	9	0,31		
	2938	12	1		

H. 1/1953] Die Molekülspektren gesättigter Sechserringe.

der Bandenmaxima und in der 2. Spalte deren Intensitäten (sschw= sehr schwach, schw= schwach, m= mittel, st= stark, sst= sehr stark).

Raman			Ultrarot						
K. ur	nd K.6		B. und	B. ⁷	eigene .	eigene Aufnahme			
cm ⁻¹	r	·	cm ⁻¹	I	cm ⁻¹	I			
252	1				l				
396	ī			1	1				
430	ī								
454	2			1 1					
756	ĩ	?			746	schw			
813	10		818	3	817	m			
0					837	schw			
	(856	4	855	m			
	l	1	875	8	874	\mathbf{st}			
	1		969	3	971	m			
1007	5		1012	6	1012	m			
	-		1033	6	1033	m			
1041	6	b	1050	8	1048	\mathbf{st}			
1090	1		1097	10	1093	\mathbf{sst}			
1153	3	1	1160	2	1158	m			
1199	3		1202	7	1200	sst			
1263	5		1256	3	1260	m			
	}		1272	3	1277	m			
1296	5		1296	3	1303	m			
	{		1348	2	1352	schw			
	1		1381	4	1385	sehw			
1436	6				1437	\mathbf{st}			
1455	2		1451	5	1457	\mathbf{st}			
	İ				2758	sschw			
2847	2	?			2843	\mathbf{st}			
2928	3			}					
2955	3				2942	\mathbf{st}			

Tabelle 2. Raman- und Ultrarotfrequenzen des Pentamethylenoxyds.

1. Cyclohexan (Abb. 1, Tabelle 1).

Das Ramanspektrum wurde von K. W. F. Kohlrausch und H. Wittek³ überprüft und mit allen bis zu diesem Zeitpunkt vorliegenden Daten verglichen. In den neueren Messungen von M. R. Fenske und Mitarbeitern⁴ mit einer automatischen Ramanapparatur müssen erst die von Hg f und Hg g erregten Spektrallinien (703, 743, 975, 1213 und 1397 cm⁻¹) ausgeschieden werden, bevor die quantitativen Ergebnisse

³ Z. physik. Chem., Abt. B 48, 177 (1941).

⁴ M. R. Fenske, W. G. Braun, R. V. Wiegand, D. Quiggle, R. H. McCornick und D. H. Rank, Analyt. Chemistry 19, 700 (1947).

Tabelle 3. Raman- und Ultrarotfrequenzen des Piperidins. Tabelle 4. Raman- und Ultrarotfrequenzen des N-Methylpiperidins.

<u></u>	Rama	n		U	ltrarot		Ran	nan		U.	ltrarot
	K. und	S . ⁸		eigene	Aufnahme		eia	ane			
cm ⁻¹	I		ę	cm ⁻¹	I		Aufn	ahme		eigene	Aufnahme
							cm ⁻¹	I		cm ⁻¹	I
243	0		dp						-i		
299	0	-					293	0	?		
400	1		р				371	1			
440	2	b	$^{\mathrm{dp}}$				432	0	?		
754	1		0,75	748	st, b		462	$\frac{1}{2}$			
				782	m		511	î			
791	1/2			791	m		543	1/2			
817	10	1	0,37				570	$\bar{2}$			
	1			827	m, b		651	1/2			
	ł			855	st		739	ō	?	741	m
858	1		p	859	\mathbf{st}		774	5		759	sst
898	0	!	Â				817	1/		827	schw
				937	m, b		860	3		859	st
948	0						917	0	b	900	schw
1006	1	l	p	1009	schw		950	1		937	sehw
1034	4		0.38	1036	m		972	0	?	965	m
1050	5		0.89	1053	m			-		997	st
		ļ	.,	1117	st		1016				~~
1146	3:1	h	0.89	1150	m		1039	3	b	1036	sst
1163	1		0,00	1170	m		1000	l		1087	et
1100	-	1		1193	m			İ		1001	st
1263	4		0.85	1260	m		1145	1		1149	get
1283	4		0.54	1						1163	
1200	T		0,01	1323	et		1170	0		1167	oot
1340	T		dn	1333	m		1110	v	1	1918	330
1010			чp	1384	eobw		1961	11/		1964	act
1440	6	h	0.88	1448	ot		1401	/2		1204	ssu
1110	U		0,00	1479	m		1901	9		1202	oat
				1514	sohw		1291			1400	100
				1717	seebw b		1041	0		1251	
				1808	ssohw b		1990	0		1395	
2662	1	h	n	1050	SSCIIW, D		1496	0		1000	ast
2730	5		0.25	9796			1400	2		1440	ast
2803	6	h	0.22	2120	111 of		14/1	2		1500	ssu
2859	7	~	0.22	2004	at					1696	aschw
2800	. 4		0,20	2001	10					1000 969×	SUIIW
2024	10	h	0,00	9024	ant					4020° 9885	III
2024	A .	aP	0,04	2904	550			Į		2000	SU
2114	4	h		1				l		4701 9790	890
0114	±	2		2000						2139	SSU
3330	4		m	3280	i m					2111	SSU
0000	*		Ъ	I			9070	1		2041	SSU
						-	4010 9020	L r		90.41	
							4990	T		2941	SSU

für eine molekültheoretische Arbeit brauchbar sind. Unseren Überlegungen sind die Werte von $M. R. Fenske^4$ zugrunde gelegt; die Ramanfrequenzen über 1500 cm⁻¹ sind den Angaben von K. W. F. Kohlrausch³entnommen.

Das Ultrarotspektrum wurde von zahlreichen Autoren⁵ und auch von uns vermessen.

2. Pentamethylenoxyd (Abb. 1, Tabelle 2).

Das Ramanspektrum ohne Polarisationsmessungen haben L. Kahovec und K. W. F. Kohlrausch⁶ aufgenommen.

Das Ultrarotspektrum wurde von St. C. Burket und R. M. Badger⁷ im Bereiche von 700 bis 1700 cm⁻¹ aufgenommen; unsere eigene Aufnahme zeigt damit eine fast völlige Übereinstimmung, erweitert aber den Spektralbereich bis 3300 cm⁻¹.

3. Piperidin (Abb. 1, Tabelle 3).

Das Ramanspektrum mit Polarisationsmessungen stammt von K. W. F. Kohlrausch und W. Stockmair⁸.

Das Ultrarotspektrum wurde von uns neu aufgenommen.

4. N-Methylpiperidin (Abb. 1, Tabelle 4).

Raman- und Ultrarotspektrum sind unbekannt und wurden von uns gemessen. Das Ramanspektrum kann aus technischen Gründen möglicherweise nicht ganz vollständig sein (2 ccm Substanz).

5. Methylcyclohexan (Abb. 1, Tabelle 5).

Für das Ramanspektrum liegen unter anderem Messungen von M. R. Fenske und Mitarbeitern⁴ vor (die Frequenzen 668 und 715 cm⁻¹ sind von Hg f und Hg g erregt und daher auszuscheiden); es wurde auch von uns aufgenommen.

Vom *Ultrarot*spektrum liegen vor der eigenen bereits zahlreich Messungen vor⁹; besonders wertvoll ist die Festlegung der Frequenzen 405, 442, 545 und 610 cm⁻¹ durch *E. K. Plyler*¹⁰ mit Hilfe eines KRS-5-Prismas.

6. Pentamethylensulfid (Abb. 1, Tabelle 6).

Über das *Raman*spektrum konnten wir in der Literatur nichts finden; es wurde daher von uns neu vermessen (Polarisationsmessungen konnten vorläufig nicht durchgeführt werden).

⁵ Landolt-Börnstein, 6. Aufl., Bd. I/2, S. 44, und Bd. I/3, S. 558 (1951).

⁶ Z. physik. Chem., Abt. B 35, 29 (1937).

⁷ J. Amer. Chem. Soc. 72, 4397 (1950).

⁸ Z. physik. Chem., Abt. B 31, 382 (1936).

⁹ Landolt-Börnstein, 6. Aufl., Bd. 1/2, S. 46, und Bd. 1/3, S. 559 (1951).

¹⁰ J. Opt. Soc. 37, 746 (1947).

		Raman			Ultrarot		
	$F.^4$	ł	eigene A	ufnahme	eigene A	ufnahme	
cm^{-1}	I	6	cm ⁻¹	τ	cm ⁻¹	I	
196	0.094						
212	0,024		202	0			
320	0,010		303 996	0			
222	0,012		000 970	0			
400	0.049	0.7	312		40510		
400	0,040	0,1	405	1	405-0		
	0.070	0.2	420	0	44010		
444	0,079	0,3	440		44210		
F 4 G	0.001	0.7	517	0	F 4 5 10		
040 010	0,061	0,1	543	3	54510		
61Z	0,006		612	0	61010		
	0.000				673	sschw	
771	0,286	0,17	772	10			
			788	1		· .	
					814	schw	
				1	834	sehw	
844	0,071	0,2			843	\mathbf{m}	
			857	4	851	schw	
					871	\mathbf{m}	
				1	891	schw	
					908	\mathbf{m}	
					925	schw	
974	0,070	0,79	972	2	965	\mathbf{st}	
			1005	2 ?			
1037	0,122	0,92	1034	4	1033	sehw	
1064	0,044	1,0	1057	0			
1093	0,062	0,78	1088	i	1092	$^{\mathrm{st}}$	
					1107	m	
					1118	m	
					1144	sehw	
1168	0,046	0,3	1157		1168	m	
1210	0,037	0,6	1207	2			
			1248	2	1250	sehw	
1264	0,091	0,77	1266	3	1263	m	
					1281	schw	
1310	0,025	0,5	1307	2			
1350	0,046	0,65	1343	3	1344	m	
			1358	0			
					1373	\mathbf{st}	
1449	0,170	0,67	1449	4	1449	\mathbf{sst}	
1458	0,156	0,65	1460	4	-		
	-				2100	sschw	
					2200	sschw	
					2583	schw	
					2652	schw	
			2859	5	2850	sst	
			2020	6	2917	set.	

Tabelle 5. Raman- und Ultrarotfrequenzen des Methylcyclohexans.

Rama	ın	Ultrarot							
eigene Aut	fnahme	٤	3.11	eigene 4	lufnahme				
em ⁻¹	I	cm ¹	I	em ⁻¹	I				
106	1								
190			ļ						
202	2		İ	}					
340 400	2								
400	3	505	cohrr						
509 650		000 654	senw						
609	10	004	SU	007					
092	4	080	senw	087	senw				
816	3	814	m	813	m				
0.09		828	m	820	st				
903	z	900	m	897	st				
		0.00	-	905	schw				
933	2	929	schw	930	schw				
965	1/2	965	st	966	sst				
1014	7	1014	schw	1014	schw				
1064	1	1062	m	1077	schw				
1092	1	1092	schw						
		1129	schw						
1143	1								
1219	1	1216	m	1224	\mathbf{st}				
1240	3	1239	schw	1242	\mathbf{m}				
1264	3	1269	$^{\rm st}$	1273	sst				
1306	1	1298	schw	1299	m				
			1	1312	schw				
1356	$\frac{1}{2}$	1339	sehw	1342	schw				
1425	8			1425	sst				
1443	5	1440	st	1439	sst				
				2667	schw				
2857	4		1	2857	sst				
2895	4								
		1		2923	sst				
2958	4	ł	1						

Tabelle 6. Raman- und Ultrarotfrequenzen desPentamethylensulfids.

Das Ultrarotspektrum zwischen 500 und 1500 cm^{-1} wurde von N. Sheppard¹¹, bzw. zwischen 600 und 3500 cm^{-1} von N. J. Leonard und J. Figueras jr.¹² bestimmt und konnte durch eine eigene Aufnahme bestätigt werden.

¹¹ Trans. Faraday Soc. 46, 429 (1950).

¹² J. Amer. Chem. Soc. 74, 917 (1952).

II. Versuch einer Frequenzzuordnung.

A. Die Gerüstfrequenzen.

1. Cyclohexan (Tabellen 1 und 8).

Nimmt man für Cyclohexan die "Sessel"form an¹³, so besitzt es die Symmetrie der Punktgruppe D_{3 d}. Tabelle 7 bringt die allgemeine Einordnung der 48 möglichen Normalschwingungen des Cyclohexans nach Rassen, Auswahl und Abzählung der modellmäßigen Schwingungsformen.

Tabelle 7. Einordnung der 48 Normalschwingungen des Cyclohexans nach der Symmetrie D_{3 d}.

_		CC	C-Gerüst	H	-C-C-Kn	н-с-н-	С	
Rasse	Auswahl	Knick	Dehnung	rocking	twisting	wagging	Knick	Dehnung
A	p ia	1	1	1			1	2
A_{1u}	v ia		1		1	1		
A_{2g}	v ia				1 .	1		
A_{2u}	v a	1		1			1	2
$\mathbf{E}_{\mathbf{g}}$	dp ia	1	1	1	1	1	1	2
$\mathbf{E}_{\mathbf{u}}^{'}$	v a⊥	1	1	1	1	1	1	2

Man hat demnach im *Raman*spektrum für das C—C-Gerüst zwei polarisierte und zwei depolarisierte Linien zu erwarten, und zwar je eine im Bereich der Knickfrequenzen (200 bis 700 cm⁻¹) und je eine im Bereich der Dehnfrequenzen (800 bis 1100 cm⁻¹). Es muß jedoch betont werden, daß die strenge Differenzierung, was die Schwingungsform betrifft, bei cyclischen Verbindungen nicht gegeben ist. Völlig sichergestellt ist, daß die vollsymmetrische Pulsationsschwingung des Gerüstes stets ihrer Frequenzlage nach als die niedrigste aller Dehnfrequenzen auftritt und eine stark polarisierte und sehr intensive Linie darstellt.

Im Ramanspektrum des Cyclohexans (Tabelle 1) sind diese vier Frequenzen unschwer aufzufinden (381, 423, 802 und 1031 cm⁻¹) im Einklang mit den Zuordnungen anderer Autoren¹⁴.

Im Ultrarotspektrum sind zwei Knickfrequenzen und eine Dehnfrequenz zu erwarten. Für letztgenannte Frequenz kommen nach den experimentellen Ergebnissen (Tabelle 1) nur die starken Banden bei 862 und 901 cm⁻¹ in Frage. Nach dem von $R. S. Rasmussen^{15}$ aufge-

¹³ K. W. F. Kohlrausch im Hand- und Jahrbuch der chemischen Physik, Bd. IX/6, S. 333. 1943.

¹⁴ Ch. W. Becket, K. S. Pitzer und R. Spitzer, J. Amer. Chem. Soc. 69, 2488 (1947).

¹⁵ J. Chem. Physics 11, 249 (1943).

nommenen Ultrarotspektrum des Cyclohexans in Gasphase ist aber eine eindeutige Identifizierung möglich. Die Bande bei 901 cm⁻¹ besitzt einen ausgeprägten P- und R-Zweig und ist damit als "Parallelbande" anzusprechen¹⁶, während 862 cm⁻¹ einen starken Q-Zweig aufweist und somit eine "Senkrechtbande" ist¹⁶. Nach Tabelle 7 sollen die Frequenzen der Rasse A_{2u} die Form von "Parallelbanden" und die der Rasse E_u die Form der "Senkrechtbanden" besitzen. Die gesuchte Gerüstschwingung der Rasse E_u muß also 862 cm⁻¹ sein.

Die beiden ultrarot-aktiven Gerüst-Knickfrequenzen konnten zwar mit den uns zur Verfügung stehenden Hilfsmitteln (Spektrometer mit NaCl-Prisma) nicht bestimmt werden. Da aber,

Nach-Frisha) mehr bestmint werden. Da aber, besonders in Hinblick auf die zu erwartenden Analogien bei den anderen Sechserringen, die Kenntnis der Lage dieser beiden Knickfrequenzen wichtig ist, sei eine diesbezügliche *Berechnung* durchgeführt.

Das Potential wird, wie beim Cyclopentan beschrieben¹⁷, mit Wechselwirkungsgliedern benachbarter innerer Koordinaten angesetzt. Mit R als innerer Koordinate (vgl. Abb. 2), k_1 als Valenzkraftkonstante (dyn \cdot cm⁻¹), k_2 als Valenzwinkelkraftkonstante (dyn \cdot cm), k_{11} als Wechselwirkung benachbarter Valenzen (dyn \cdot cm⁻¹), k_{22} als Wechselwirkung benachbarter Winkel (dyn \cdot cm) und k_{12} als Wechselwirkung benach-

Abb. 2. Spezielle Bezeichnung dér inneren Koordinaten R. (R_i j... Änderung des Atomabstandes, R¹... Änderung des Valenzwinkels).

barter Valenzen und Winkel (dyn) lautet dann der Potentialansatz:

$$2 \; V = k_1 \left[(R_{12})^2 + (R_{23})^2 + (R_{34})^2 + (R_{5})^2 + (R_{56})^2 + (R_{61})^2
ight] + \ + k_2 \left[(R^1)^2 + (R^2)^2 + (R^3)^2 + (R^4)^2 + (R^5)^2 + (R^6)^2
ight] + \ + 2 \, k_{11} \left[R_{12} R_{23} + R_{23} R_{34} + R_{34} R_{45} + R_5 R_{56} + R_{56} R_{61} + R_{61} R_{12}
ight] + \ + 2 \, k_{22} \left[R^1 \; R^2 + R^2 \; R^3 + R^3 \; R^4 + R^4 \; R^5 + R^5 \; R^6 + R^6 \; R^1
ight] + \ + 2 \, k_{12} \left[R_{12} (R^1 + R^2) + R_{23} (R^2 + R^3) + R_{34} (R^3 + R^4) + \ + R_5 \; (R^4 + R^5) + R_{56} \; (R^5 + R^6) + R_{61} \; (R^6 + R^1)
ight].$$

Die Säkulargleichungen zur Berechnung der Normalschwingungsfrequenzen werden damit aus folgenden Matrizen gebildet¹⁸:

¹⁶ R. M. Badger und L. R. Zumwald, J. Chem. Physics 6, 711 (1938).

¹⁷ H. Voetter und H. Tschamler, Mh. Chem. 83, 835 (1952).

¹⁸ Für die Durchführung solcher Rechnungen kann z. B. auf *H. Voetter*, "Über die Berechnung der Grundfrequenzen der Moleküle" [Abhandlungen des Dokumentationszentrums für Technik und Wirtschaft, H. 15 (Wien, 1952)] hingewiesen werden.

Rasse	(G-Matrix	F-Matrix		
A_{1g}	$\begin{array}{ccc} 4/3 \cdot \mu & -s \cdot \mu \cdot \sin \alpha \\ -s \cdot \mu \cdot \sin \alpha & 11/3 \cdot s^2 \cdot \mu \end{array}$	$egin{array}{c c} k_1+2k_{11} & 2k_{12} \ 2k_{12} & k_2+2k_{22} \end{array}$		
А _{1 ц}	$8/3 \cdot \mu$	$k_1 - 2 k_{11}$		
A _{2 u}	$9\cdot s^2\cdot \mu$	$k_2 - 2 k_{22}$		
E_{g}	$\begin{array}{cccc} 7/3 \cdot \mu & -s \cdot \mu \cdot \sin \alpha \\ -4 s \cdot \mu \cdot \sin \alpha & 15,5/3 \cdot s^3 \cdot \mu \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
E _u	$ \begin{array}{ccc} 5/3 \cdot \mu & -s \cdot \mu \cdot \sin \alpha \\ -3 s \cdot \mu \cdot \sin \alpha & 7,5/3 \cdot s^2 \cdot \mu \end{array} $	$k_1 = egin{array}{cccc} k_1 + k_{11} & k_{12} & \ 3 & k_{12} & k_2 + k_{22} \end{array}$		
Mit $u =$	$= 1/m = \frac{6,023}{50113} = \frac{6,023}{5013}, s = \frac{6}{5013}$	$\frac{1}{2}$ und		

Mit $\mu = 1/m = \frac{0.025}{[CH_2]} = \frac{0.025}{14}$, $s = \frac{0.025}{C-C-Abstand(A)} = \frac{1}{1.54}$ und $\alpha = 108^{\circ}$ (Tetraederwinkel) erhält man aus $|\mathfrak{G} \cdot \mathfrak{F} - \mathfrak{E} \cdot \lambda| = 0$ die Wellenzahlen $v_i = 10^3 \cdot \sqrt{0.2815 \lambda_i}$ (cm⁻¹).

Mit den fünf den Rassen nach bereits sicher zugeordneten Frequenzen $(A_{1 g}: 381 \text{ und } 802 \text{ cm}^{-1}; E_g: 423 \text{ und } 1031 \text{ cm}^{-1}; E_u: 862 \text{ cm}^{-1})$ lassen sich nun aus den angegebenen Gleichungen die Kraftkonstanten und Wechselwirkungsgrößen berechnen:

Durch Einsetzen dieser Werte der Kraftkonstanten in die entsprechenden Gleichungen der Rassen E_u und A_{2u} berechnen sich die beiden gesuchten ultrarot-aktiven Knickfrequenzen zu 216, bzw. 653 cm⁻¹. Somit kann offenbar die beobachtete Frequenz 674 cm⁻¹ (Tabelle 1) der Knickschwingung des Gerüstes der Rasse A_{2u} zugeordnet werden.

Es sei darauf hingewiesen, daß die oben erhaltenen Werte der Kraftkonstanten von gleicher Größe sind, wie diese bei vielen Kohlenwasserstoffen bereits gefunden wurden. Werden die obigen Werte der Kraftkonstanten in die entsprechenden Gleichungen für *Cyclopentan*¹⁷ eingesetzt, so erhält man für die C—C-Gerüstfrequenzen des Cyclopentans 586, 881, 892 und 1084 cm⁻¹, durchaus im Einklang mit den experimentell gefundenen Werten: 589, 886, 896 und 1030 cm⁻¹. Eine derartige Zuordnung beim Cyclopentan wurde von uns bereits als die *wahrscheinlichste* angesehen¹⁹ und erhält durch diese unabhängige Berechnung eine weitere Stütze.

2. Pentamethylenoxyd (Tabellen 2 und 8).

Die "Sesselform" des Sechserringes ist nicht nur für *Cyclohexan*, sondern auch für *1,4-Dioxan* sichergestellt²⁰. Es ist demnach anzunehmen,

¹⁹ H. Tschamler und H. Voetter, Mh. Chem. 83, 1228 (1952).

²⁰ D. A. Ramsay, Proc. Roy. Soc. London, Ser. A 190, 562 (1947). — F. E. Malherbe und H. J. Bernstein, J. Amer. Chem. Soc. 74, 4408 (1952).

daß auch die Sechserringe mit nur einem Heteroatom im Ring in der "Sesselform" vorliegen. Da sich aber die Erwartungsspektren der "Sessel-" und "Wannenform" in diesem Falle (zum Unterschied von den hochsymmetrischen Molekülen Cyclohexan und 1,4-Dioxan) nur unwesentlich unterscheiden (beide Formen gehören zur Punktgruppe C_s), ist ein *Beweis* für die tatsächliche Struktur auf spektroskopischem Wege wohl nur schwer möglich. Eventuell könnten genaue Polarisationsmessungen der Pulsationsfrequenz im *Raman*effekt über diese Frage einigen Aufschluß geben.

Do 1	Cyclo-	C.	nta- tylen- yd	Piperi-	N-Meth	ylpiperidin	Methyl	cyclohexan	nta- ylen- lfid
D3 d	hexan	°s	Per meth ox	din	Ring	Rest	Ring	Rest	Per meth sul
Eu	(216)	A' A''	252	243 299	 293		186 303		$\begin{array}{c} 196 \\ 252 \end{array}$
A_{1g}	381	A'	396	400	371	A'' 432	336	A'' 403	348
Eg	423	A' A''	430 454	440	$rac{462}{511}$	A′ 570	446 517	A′ 543	400
A_{2u}	674	A'			651		612		509
A_{1g}	802	A'	813	817	774	A' 860	772	A' 844	659
Eu	862	A' A''	874	858 937	860 965		871 972		692 816
Eg	1031	A' A''	1007 1041	$\begin{array}{c} 1034\\ 1050 \end{array}$	997 1036		1005 1057		903 1014
A _{1 u}	verb.	A''	1093	1117	1099		1034		965

Tabelle 8. Normalschwingungen des Gerüstes bei den verschiedenen gesättigten Sechserringen.

Da für Pentamethylenoxyd keine Polarisationsmessungen der Ramanfrequenzen vorliegen, muß die Zuordnung auf Grund der Frequenzlagen und -intensitäten allein versucht werden. Wegen der ähnlichen Massen von (CH_2) und (O) und der ähnlichen Größe des C—C—C- bzw. C—O—C-Winkels ist zu erwarten, daß die im Cyclohexan entarteten Normalschwingungen im Spektrum des Pentamethylenoxyds nur geringe Aufspaltung zeigen.

Die Zuordnung der Frequenzen der Tabelle 2 im Bereich der Knickschwingungen ist einfach und aus Tabelle 8 ersichtlich. Die Aufspaltung der Frequenz 423 cm⁻¹ beim Cyclohexan ist beim Pentamethylenoxyd

Monatshefte für Chemie. Bd. 84/1.

145

tatsächlich gering (siehe Tabelle 8). Eine der ultrarot-aktiven Frequenz 674 cm⁻¹ beim *Cyclohexan* analoge Raman- und ultrarot-aktive Frequenz im Spektrum des *Pentamethylenoxyds* ist nicht auffindbar. Da diese Frequenz nur mit geringer Intensität zu erwarten ist und ganz am Rand des Meßbereiches eines Spektrometers mit NaCl-Prisma liegen sollte, wurde sie offenbar nicht beobachtet. Es soll jedoch bemerkt werden, daß beim 1,4-Dioxan eine starke ultrarot-aktive Bande bei 610 cm⁻¹, die der fraglichen Normalschwingung zuzuordnen ist, gefunden wurde²⁰ (*M.* und *B.*). In der gleichen Arbeit wurden auch mit Hilfe eines KRS-5-Prismas die niedrigsten Knickfrequenzen von 1,4-Dioxan bei 273 und 283 cm⁻¹ im Ultrarotspektrum eindeutig festgestellt.

Die Zuordnung der Frequenz 813 cm⁻¹ als raman- und ultrarot-aktive Pulsationsschwingung ist eindeutig.

An Stelle der ultrarot-aktiven Frequenz 862 cm⁻¹ beim Cyclohexan sind im *Pentamethylenoxyd* zwei ultrarot- und Raman-aktive Frequenzen zu erwarten. Experimentell findet man nur eine starke ultrarot-aktive Frequenz bei 874 cm⁻¹, ein Ergebnis, das unter Umständen auf die höher symmetrische "Sesselform" hinweist. Die starken Ramanfrequenzen bei 1007 und 1041 cm⁻¹ (beide auch ultrarot-aktiv) sind als weitere Gerüstschwingungen anzunehmen. Die höchste Gerüstdehnfrequenz ist beim Pentamethylenoxyd als gesättigtem Äther zwischen 1080 und 1120 cm⁻¹ (antisymmetrische C-O-C-Dehnfrequenz bei gesättigten Kettenmolekülen) stark im Ultrarot- und schwach im Ramanspektrum zu erwarten²¹, so daß die Zuordnung der Frequenz 1093 cm⁻¹ gegeben erscheint. Diese Zuordnung ist im wesentlichen die gleiche, wie sie auch St. C. Burket und R. M. Badger⁷ angeben, wobei von diesen Autoren für Pentamethylenoxyd Pseudosymmetrie D_{3d} angenommen wird.

3. Piperidin (Tabellen 3 und 8).

Die Zuordnung wird durch das Vorliegen von Polarisationsmessungen der *Raman*linien erleichtert.

Die Gerüstknickfrequenzen lassen sich zwanglos in Analogie zum Cyclohexan und Pentamethylenoxyd einreihen, wenn man die als breit vermerkte Ramanlinie bei 440 cm⁻¹ als nicht aufgespalten annimmt. Die in der Gegend von 650 cm⁻¹ zu erwartende Frequenz ist wohl aus gleichen Gründen wie beim Pentamethylenoxyd nicht beobachtet worden.

Die Zuordnung der Pulsationsfrequenz unterliegt keinem Zweifel (817 cm^{-1}) .

Von den fünf restlichen Ringfrequenzen sollten alle ultrarot-aktiv und im Ramanspektrum drei depolarisiert (Rasse A'') und zwei polarisiert (Rasse A') sein. Die beiden polarisierten Ramanfrequenzen liegen bei

²¹ H. Tschamler und R. Leutner, Mh. Chem. 83, 1502 (1952).

858 und 1034 cm⁻¹ und sind beide auch ultrarot-aktiv. Von den drei depolarisierten Ramanlinien tritt offenbar nur eine bei 1050 cm⁻¹ (auch ultrarot-aktiv) auf. Die höchste Ringschwingung ist eindeutig die starke Ultrarotfrequenz 1117 cm⁻¹. Für die noch fehlende fünfte Frequenz wird die ultrarote bei 937 cm⁻¹ angenommen.

4. N-Methylpiperidin (Tabellen 4 und 8).

Durch das C-Atom der CH₃-Gruppe wird die Zahl der Gerüstfrequenzen um drei vermehrt. Über den Zusammenhang dieser drei zusätzlichen Frequenzen mit den Spektrallinien von *Trimethylamin* kann auf eine frühere Arbeit¹ verwiesen werden.

Auch beim N-Methylpiperidin ist eine Zuordnung der experimentell bestimmten Frequenzen zu den Gerüstknickschwingungen ohne große Schwierigkeit möglich. Infolge der starken Störung der symmetrischen Form des Sechserringes durch die CH_3 -Substitution tritt die bei den vorhin behandelten Substanzen fehlende höchste Knickschwingung diesmal im Ramaneffekt bei 651 cm⁻¹ auf.

Die beiden erwarteten hochsymmetrischen Schwingungen sind als stärkste Ramanlinien bei 774 und 860 cm⁻¹ (auch ultrarot-aktiv) kenntlich.

Die Einordnung der anderen Frequenzen ist im Einklang mit den bereits besprochenen Spektren ohne weiteres möglich. Die starke Ramanfrequenz bei 1036 cm⁻¹ ist außerordentlich diffus und beinhaltet sicher mehrere Normalschwingungen. Höchstwahrscheinlich ist auch die im Ultrarot bei 997 cm⁻¹ erscheinende Ringfrequenz darin noch enthalten, so daß diese also auch raman-aktiv wäre, wie aus Analogie zum *Pentamethylenoxyd* und *Piperidin* zu erwarten ist. Die Frequenz 860 cm⁻¹ wurde bei der Zuordnung in Tabelle 8 zweimal verwendet. Bei dem sehr ähnlich gebauten Molekül *Methylcyclohexan* sind diese Frequenzen getrennt und liegen bei 844 und 871 cm⁻¹.

5. Methylcyclohexan (Tabellen 5 und 8).

Im Anschluß an die bereits besprochenen Zuordnungen, insbesondere des *N-Methylpiperidins*, ergibt sich die Frequenzzuordnung für *Methylcyclohexan* von selbst.

Die Ringschwingung bei 1034 cm^{-1} ist hier nicht mehr die stärkste Ultrarotfrequenz, da kein Heteroatom im Ring vorhanden ist.

6. Pentamethylensulfid (Tabellen 6 und 8).

Wie schon beim *Tetrahydrothiophen* im Vergleich zu den anderen Fünferringen gezeigt wurde¹, verschieben sich wegen der wesentlich größeren Masse (S) gegenüber (CH_2) gewisse Frequenzen gegen kleinere Wellenzahlen. Ferner ist infolge der großen Masse des S-Atoms und des wesentlich kleineren Valenzwinkels (C—S—C) die Symmetrie des Sechserringes stark gestört und es treten deshalb auch nahezu alle Linien gleichzeitig im Ramaneffekt und im Ultrarotspektrum auf. Insbesondere gilt dies für die Frequenz 509 cm⁻¹, die der höchsten Knickschwingung entspricht und die beim Oxyd und Imid nicht zu beobachten war. Die übrigen Knickschwingungen des Ringes lassen sich sinngemäß an die Zuordnungen der anderen gesättigten Sechserringe anschließen.

Die Pulsationsfrequenz ist wieder die intensivste Ramanlinie und liegt bei 659 cm^{-1} (auch ultrarot-aktiv).

Abb. 3. Die Gerüstfrequenzen der Sechserringe. (| Ramanfrequenz, ‡ Ultrarotfrequenz; die Höhe gibt die Intensität an. Die mit einem Stern versehenen Linien sind Gerüstfrequenzen, die vom C-Atom der CH₈-Gruppe verursacht sind.)

Die höchste Dehnfrequenz ist wohl sicher die an ihrer Stärke kenntliche Ramanfrequenz 1014 cm⁻¹ (auch ultrarot-aktiv). Die der antisymmetrischen C—S—C-Dehnfrequenz in Kettenmolekülen entsprechende Ringschwingung beim *Pentamethylensulfid* ist wohl auch hier die stärkste Ultrarotbande, aber wegen der starken Verschiebung nach niederen Wellenzahlen jetzt nicht mehr die höchste Ringschwingung. Diese Unterscheidung ist aber an sich nicht von grundsätzlicher Bedeutung, da beide Schwingungen derselben Rasse A'' angehören. Die Zuordnung der restlichen Gerüstfrequenzen zu 692, 816 und 903 cm⁻¹ erscheint zuletzt gegeben. —

Allgemein ist zu sagen, daß eine Frequenz, die im Cyclohexan nur Raman-aktiv ist, bei den anderen Sechserringen stark Raman- und nur schwach (oder auch gar nicht) *ultrarot*-aktiv ist, bzw. daß nur *ultrarot*aktive Frequenzen des *Cyclohexans* in den anderen Fällen stark *ultrarot*und schwach *Raman*-aktiv werden (siehe Abb. 3).

B. Die H-C-C-Knickschwingungen.

Zu diesen Normalschwingungen gehören die "rocking"- (800 bis 1150 cm⁻¹), "twisting"- (1050 bis 1250 cm⁻¹) und "wagging"-Frequenzen (1150 bis 1380 cm⁻¹). Jede CH₂-Gruppe liefert abzählungsmäßig je eine Frequenz der oben angegebenen Schwingungsformen, demnach insgesamt 18 für Cyclohexan und 15 für die übrigen hier diskutierten Sechserringe.

Beim Piperidin treten im betrachteten Spektralbereich zusätzlich 2 H-N-C-Knickfrequenzen, beim N-Methylpiperidin und Methylcyclohexan zusätzlich je 2 H-N-C- bzw. H--C-C-Frequenzen der CH_3 -Gruppe auf.

Wenn auch eine *strenge* Unterscheidung in "rocking"-, "twisting"und "wagging"-Bewegungen besonders bei Molekülen mit niederer Symmetrie nicht möglich ist, bleibt diese Einteilung jedoch aus systematischen Gründen für die versuchten Zuordnungen in Tabelle 9 beibehalten.

1. Cyclohexan (Tabellen 1 und 9).

Wegen der hohen Symmetrie dieses Moleküls ist die Anzahl der aktiven H--C--C-Knickfrequenzen stark vermindert, was die Zuordnung sehr erleichtert. Nach Tabelle 6 ist von den H--C--C-Knickfrequenzen nur eine einzige *polarisierte* Ramanlinie ("rocking"-) zu erwarten; sie ist eindeutig die Frequenz 1161 cm⁻¹. Ferner sind je eine *depolarisierte* Raman-aktive "rocking"-, "twisting"- und "wagging"-Frequenz der Rasse E_g zu erwarten; diesen kann man die Ramanlinien bei 1270 ("twisting") und 1351 cm⁻¹ ("wagging") zuordnen. Die fehlende Ramanaktive "rocking"-Frequenz ist, da keine weiteren Ramanlinien vorhanden sind, verdeckt oder bisher nicht gefunden worden.

Von den H---C--C-Knickschwingungen ist im Ultrarotspektrum nur die "rocking"-Frequenz der Rasse A_{2u} (im Gasspektrum des *Cyclohexans* mit der Bandenform einer "Parallelbande") zu erwarten. Nach dem experimentellen Ergebnis von *R. S. Rasmussen*¹⁵ ist die Frequenz 901 cm⁻¹ die einzige in dem in Frage kommenden Spektralbereich, die der Bandenform nach eine "Parallelschwingung" darstellt. Den drei ultrarot-aktiven H---C---C-Knickschwingungen (je eine "rocking", "twisting" und "wagging") der Rasse E_u werden die Frequenzen 1015, 1039 und 1259 cm⁻¹ zugeordnet, bewiesen durch ihre Bandenform ("Senkrechtschwingungen") im Gasspektrum des *Cyclohexans*¹⁵.

Schwingungs- form	D _{3 d}	Cyclo- hexan	¢s	Penta- methylen- oxyd	Piperidin	N-Methyl- piperidin	Methylcyclo- hexan	Penta- methylen- sulfid
	A ₂	901	A″		754			
			\mathbf{A}'	190	782	. 741	188	
"rocking"	е _g	verdeckt	A''	835	791		814	
	$\mathbf{E}_{\mathbf{u}}$	1015		855	855	827	834	826
	A _{1g}	1161	A'	971	948	937	908	933
twisting"	- <u></u>	1030	A''		1		1092	
	u	1039	A'	1033	1006	1087	1107	1064
	A _{1 u}	verb.	A''	1153	1146	1145	1118	1092
u g	A_{2g}	verb.	A'	1199	1163	1170	1168	1129
	$\mathbf{E}_{\mathbf{g}}$	1270	Α''		1193	1218	1207	1143
	E	1259	A''	1263	1263	1261	1248	1219
			A'	1277	1283	1282	1266	1240
"wagging"	A _{1 u}	verb.	A'	1296	1323	1291	1307	1264
	Eg	1351	A''	1352	1340	1351	1343	1306
	A_{2g}	verb.	A''	1385	1384	1380	1373	1342
					H—N—C	H ₃ —C—N	H ₃ -C-C	
				A'	827	1016	(1034)	
				A″	898	1163	1144	

Tabelle 9. Die H-C-C-Knickschwingungen der CH₂-Gruppen der gesättigten Sechserringe.

2. Pentamethylenoxyd (Tabellen 2 und 9).

Gegenüber der niedersten "rocking"-Frequenz 901 cm⁻¹ beim Cyclohexan ist diese beim Pentamethylenoxyd offenbar bis etwa 756 cm⁻¹ verschoben, eine Erscheinung, die sich auch bei allen anderen betrachteten Sechserringen zeigt. Eine derartige Frequenzlage als untere Grenze der "rocking"-Frequenzen für CH₂-Gruppen, ja sogar eine noch etwas niedrigere, wurde auch bei den n-Paraffinen eindeutig festgestellt (wird demnächst veröffentlicht).

Betrachtet man das *Molekülmodell* des Cyclohexans mit der Symmetrie $D_{3 d}$ ("Sesselform"), dann stehen drei H-Atome der CH₂-Gruppen der

150

Kohlenstoffatome 1, 3 und 5 senkrecht aus der Hauptebene des C—C-Gerüstes bzw. 3 H-Atome der CH_2 -Gruppen der Kohlenstoffatome 2, 4 und 6 senkrecht in entgegengesetzter Richtung. Diese Konstellation führt bei der "rocking"-Bewegung zu einer *starken Annäherung* von je drei H-Atomen, und es ist verständlich, daß dadurch die "rocking"-Frequenzen der CH_2 -Gruppen gegenüber denen in einer Kette bzw. einem Ring mit Heteroatom oder Substitution verschoben sind.

Da einige Frequenzen weniger beobachtet wurden, als die Abzählung fordert, muß angenommen werden. daß einige Normalschwingungen zufällig entarten bzw. die Symmetriestörung noch nicht so stark ist, daß in allen Fällen Aufspaltung eintritt. Die vorgeschlagene Zuordnung ist aus Tabelle 9 ersichtlich.

3. Piperidin, N-Methylpiperidin, Methylcyclohexan, Pentamethylensulfid (Tabellen 3, 4, 5, 6 und 9).

Die Zuordnung der H-C--C-Knickschwingungen der CH_2 -Gruppen kann weitgehend analog dem *Pentamethylenoxyd* durchgeführt werden, wobei die entsprechenden Frequenzen beim

	Beoba	ichtet	
Substanz	Raman	Ultrarot	
Cyclohexan	1451 1461	1452	
Pentamethylenoxyd	1436 1455	1437 1457	
Piperidin	1440 (b)	1448 1472	
N-Methylpiperidin	1380 1436 1471	$\frac{1385}{1445}\\1467$	
Methylcyclohexan	1449 1460	1373 1449	
Pentamethylensulfid	$\begin{array}{c} \hline 1425 \\ 1443 \end{array}$	1425 1439	

Tabelle 10. Die beobachteten H-C-H-Knickschwingungen der CH₂-Gruppen.

Pentamethylensulfiddurchwegs etwas gegen kleinere Wellenzahlen verschoben sind:

Die höchste "wagging"-Frequenz tritt in den Spektren von Pentamethylenoxyd, Piperidin und Pentamethylensulfid nur schwach, hingegen im N-Methylpiperidin und Methylcyclohexan sehr stark auf, was auf die Überlagerung durch die symmetrische H—C—H-Knickfrequenz der CH_a-Gruppe zurückzuführen ist.

C. Die H-C-H-Knickschwingungen.

Jede CH_2 -Gruppe liefert eine H—C—H-Knickfrequenz. Diese Normalschwingungen sind aber in der Regel so lagekonstant (um 1450 cm⁻¹), daß durch zufällige Entartungen stets viel weniger Frequenzen beobachtet werden, als nach der Abzählung zu erwarten sind. Außerdem liefert jede CH_3 -Gruppe zwei Normalschwingungen (antisymmetrische H—C—H-Knickfrequenzen) derselben Frequenzlage. Diese von den

Tabelle	11.	\mathbf{Die}	beo	bacht	teten
C-H	-De	hnfre	que	nzen	der
gesät	tig	ten S	Sech	serrii	nge.

	Beob	achtet
Substanz	Raman	Ultrarot
		0000
	2052	2800
0	2892	2857
Cyclonexan	2888	0015
	2905	2915
	2930	
	2847	2843
Pontamathylonowyd	2928	
remainethylenoxyu		2942
	2955	
	2730	2726
	2803	2802
	2852	2857
Piperidin	2890	
Ť	2934	2934
	3030	
	3114	
		2665
		2701
		2739
N-Methylpiperidin		2777
0 I I		2841
	2876	
	2950	2941
	2859	2850
Methylcyclohexan	2929	2917
	2857	2857
	2805	4001
Pentamethylensulfid	2090	2023
	2958	2020

H-C-H-Knickschwingungen der CH₂- und CH₃-Gruppen herrührenden Frequenzen können kaum unterschieden

werden. Die symmetrische H—C —H-Knickschwingung der CH₃-Gruppe hingegen liegt für gewöhnlich um 1375 cm⁻¹ und tritt beim *N-Methylpiperidin* bzw. *Methylcyclohexan* im Ultrarotspektrum bei 1385 bzw. 1373 cm⁻¹ auf.

In Tabelle 10 sind die beobachteten H-C-H-Knickschwingungsfrequenzen der untersuchten Sechserringe zusammengestellt.

D. Die C-H-Dehnfrequenzen.

Diese Normalschwingungen liegen bei allen gesättigten Kohlenwasserstoffen zwischen 2800 und 3000 cm⁻¹ und sind sehr intensive Frequenzen Ramanim und Ultrarotspektrum. Die Abzählung fordert für iedes H-Atom eine solche C-H-Frequenz, tatsächlich werden aber durch zufällige Entartungen wesentlich weniger beobachtet. Eine Zusammenstellung der bei den untersuchten Sechserrin-

gen beobachteten C-H- Dehnfrequenzen bringt Tabelle 11.

Beim *Piperidin* wurden verhältnismäßig starke Frequenzen bei 2730 (Raman- und ultrarot-aktiv) und 3114 cm⁻¹ (Raman-aktiv) gefunden. Die Zugehörigkeit zu den C---H-Dehnfrequenzen ist nicht sicher. H. 1/1953] Die Molekülspektren gesättigter Sechserringe.

Die N—H-Dehnfrequenz der Imingruppe im *Piperidin* liegt im Ramanspektrum bei 3339 cm⁻¹ und im Ultrarotspektrum bei 3280 cm⁻¹. Eine ähnliche Diskrepanz der Lage der Iminfrequenz zwischen Raman-

Tabelle 12. Zuordnung der restlichen beobachteten Frequenzen bei den gesättigten Sechserringen zu Oberton- und Kombinationsschwingungen.

Substanz	Beobachtet			Aktive
	Raman	Ultrarot	Zuordnung	Rasse
Cyclohexan	2607	527 722 1342 1511 1577 1652 1698 1772 1992 2410 2610	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} A_{2u}\\ E_{u}\\ d{array}$
	2632 2698	2701	1161 + 1452 = 2613 1270 + 1351 = 2621 $2 \times 1351 = 2702$ 1259 + 1451 = 2710 1259 + 1452 = 2711	$egin{array}{c} {\rm E}_{ m u} \ { m A}_{1 m g} \ { m A}_{1 m g} \ { m E}_{ m g} \ { m E}_{ m g} \ { m E}_{ m u} \end{array}$
Pentamethylenoxyd	•	2758	2 imes 1385 = 2770	
Piperidin	2662	1544 1717 1898	$\begin{array}{r} 440 + 1117 = 1557 \\ 827 + 898 = 1725 \\ 2 \times 860 = 1720 \\ 860 + 1034 = 1894 \\ 1283 + 1384 = 2667 \\ 1323 + 1340 = 2663 \end{array}$	
N-Methylpiperidin	543 917 1321	900 1582 1686 2625	$\begin{array}{rrrr} 293+(250)=&550\\ 432+&462=&894\\ 2\times&462=&924\\ 462+&860=&1322\\ 432+&1149=&1581\\ 651+&1036=&1687\\ 1149+&1467=&2616\\ 1167+&1445=&2612 \end{array}$	

153

Substanz	Beobachtet			Aktive
	Raman	Ultrarot	Zuordnung	Rasse
Methylcyclohexan	372 426 1358	673 851 891 925 1144 1281 2100 bis 2200 2583 2652	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
Pentamethylensulfid		$905 \\ 1312 \\ 2667$	$400 + 509 = 909 \ 2 imes 660 = 1320 \ 1219 + 1443 = 2662$	

(Fortsetzung der Tabelle 12.)

effekt und Ultrarotspektrum ist auch beim Pyrrolidin beobachtet worden¹.

Wie im *N-Methylpyrrolidin*¹ werden auch im *N-Methylpiperidin* auffallend starke Linien bei für C—H-Dehnfrequenzen außergewöhnlich niedrigen Wellenzahlen (2665, 2701, 2739 und 2777 cm⁻¹) beobachtet, ohne daß man ihr Auftreten erklären und begründen kann.

E. Oberton- und Kombinationsschwingungen.

Eine Deutung der noch nicht zugeordneten Frequenzen (vgl. Tabellen 1 bis 6) kann mit Hilfe von Obertönen oder Kombinationen versucht werden. Solche Frequenzen treten im Ultrarotspektrum fast immer, im Ramanspektrum selten auf. Da die ultrarot-aktiven Obertöne oder Kombinationsschwingungen meistens nur geringe Intensität aufweisen, sind die Angaben über ihre Frequenzlagen stets mit einer gewissen Unsicherheit behaftet. Eine Zusammenstellung der restlichen Frequenzen als erste Obertöne oder Kombinationen zweier aktiver Normalschwingungen findet sich in Tabelle 12.

H. 1/1953] Die Molekülspektren gesättigter Sechserringe.

Sämtliche bekannte Frequenzen können hiermit gedeutet werden. Nur beim *Cyclohexan* konnten nicht alle Frequenzen unter der Annahme des Vorliegens von ersten Obertönen oder nur Zweierkombinationen identifiziert werden (Raman: 2666 und 2871 cm⁻¹; Ultrarot: 1367 und 2667 cm⁻¹) und es ist anzunehmen, daß diese Frequenzen entweder a) Obertöne oder Kombinationen von verbotenen Normalschwingungen oder b) Obertöne oder Kombinationen von erlaubten und verbotenen Normalschwingungen oder schließlich c) höhere Kombinationen sind.